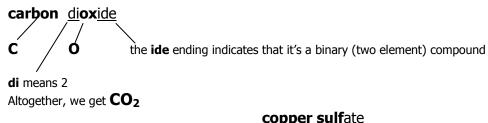

Aim: How can we tell if a substance is a compound?

<u>Compound</u> a substance composed of **2 or more elements chemically** combined. Compounds consist of 2 or more types of atoms bonded to each other.

Element A Element B Compd AB Compd A2B

1st - Just check out the formula.

Cu, C, Na, Fe, H₂,O₂,...only **one** symbol, elements


NaCl, CuO, KBr, H₂O... **two or more** symbols written, side by side, compounds

And, $H_2O \neq H_2O_2$

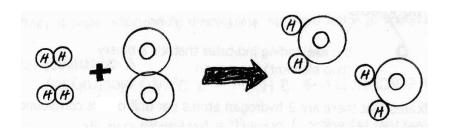
Compounds have specific formulas & definite compositions.

2nd- Analyze the name.

You can tell from the name that it's a compound. You'll see pieces of the names of elements that make up the compound and prefixes & endings that tie it altogether.

Cu S See Table E,

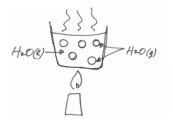
ate indicates that **O** is present


Altogether, we get **CuSO**₄

3rd- Compare the properties.

When elements are chemically combined their properties change. For example,

H_2	O_2	H₂O
Hydrogen	Oxygen	Water
(g)	(g)	(/)
explosive	flammable	non-explosive
		non-flammable


WHY??? the properties don't "cancel out"; they change due to the **breaking of bonds**, **rearrangement of atoms** & **formation of new bonds**. That's what a chemical change (reaction) is all about.

4th - Try breaking it down.

Compounds are formed **and** decomposed only by a chemical change.

$$H_2O(/) + HEAT \rightarrow H_2O(g)$$
 } boiling, **physical** change

2
$$H_2O(/)$$
 + ELECTRICITY \rightarrow **2** $H_2(g)$ + **1** $O_2(/)$ } electrolysis, **chemical** change

Demo: Electrolysis of water using the **Hoffmann Apparatus**; refer to Diagram in handout (HW sheet).

NOTE: a) H₂ collects at the (-) electrode; O₂ at the (+) electrode

- b) H₂ collects twice as much as O₂ and
- c) H₂ "pops" with a burning splint;
- d) O₂ "ignites" with a glowing splint.