2	IG	NIF	CA	NT	FI	GU	RES
					8 8		RA BE OF

Name _____

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

- 1) All digits 1-9 inclusive are significant. Example: 129 has 3 significant figures.
- 2) Zeros between significant digits are always significant.
 - Example: 5,007 has 4 significant figures.
- 3) Trailing zeros in a number are significant only if the number contains a decimal point.

Example: 100.0 has 4 significant figures.
100 has 1 significant figure.

- 4) Zeros in the beginning of a number whose only function is to place the decimal point are not significant.
 - Example: 0.0025 has 2 significant figures.
- Zeros following a decimal significant figure are significant.

Example: 0.000<u>470</u> has 3 significant figures. 0.47000 has 5 significant figures.

Determine the number of significant figures in the following numbers.

1. 0.02

6. 5,000. _____

2. 0.020

7. 6,051.00 _____

3. 501 _____

8. 0.0005 _____

4. 501.0

9. 0.1020 _____

5. 5,000 ____

- 10. 10,001 _____
- 1. 8040 _____
- 6, 90,100
- 2. 0.0300 _____
- 7. 4.7 x 10⁻⁸
- 3. 699.5
- 8. 10,800,000.
- 4. 2.000 x 10²
- 9. 3.01 x 10²¹
- 5. 0.90100
- 10. 0.000410 _____