DEMO: "Pop Gun"

Aim: How do we explain the behavior of gases? (Part I)

1. What's happening? $\{\uparrow P, \downarrow V, T$ constant $\}$
a) temperature is constant, the pressure increases as the volume decreases; it's an "inverse" relationship
b) Boyle's Law: At constant temperature, the pressure of a gas is inversely related (proportional) to its volume.
c) Why? According to the Kinetic Molecular Theory, the pressure of a gas is due to the force of collisions between its molecules and the walls of their container. Therefore, decreasing the volume of a gas increases its pressure because less space leads to more collisions per second.

Other demos: squeeze your cheeks, twisting an empty plastic water bottle to make the top pop off, etc...
2. Quantifying the relationship

DEMO: pressure gauge attached to syringe (mounted on Plexiglas to project onto board).
a) DATA

b) GRAPH

an "inverse" relationship

c) FORMULA

$$
P \times V=a * \text { constant number } \rightarrow \quad \begin{aligned}
\left\{P_{1} \times V_{1}=P_{2} \times V_{2}\right\} \\
16 \times 22=32 \times 11
\end{aligned}
$$

* The value of the constant depends on the mass of the gas \& its temperature.

3. UNITS

3. Refer to Handout

RCHEM 1/Chille
Boyle's Law: At constant T, P is inversely related to V .

$$
\left\{P_{1} \times V_{1}=P_{2} \times V_{2}\right\}
$$

1) If the volume of a gas is doubled at constant temperature, what will happen to its pressure?
2) 100 ml of a gas exerts 4 torr of pressure. If the temperature remains the same, what will be the new pressure when the gas is compressed to 50 ml ?
$\beta_{2}=$?

$$
\begin{aligned}
& P_{1} \cdot V_{1}=P_{2} \cdot V_{2} \\
& 4 \cdot 100=P_{2} \cdot 50 \\
& \frac{400}{50}=P_{2}=8 \text { for }
\end{aligned}
$$

Finish the rest of the problems in the handout. Circle and Label. Be precise!

