Aim: How do we explain the behavior of gases? (Part II)

1. What's happening? $\left\{\uparrow P, \mathrm{~V}_{\text {constant }}, \uparrow T\right\}$

a) In a rigid container the volume is constant, the pressure increases as the temperature increases; it's a "direct" relationship
b) Lussac's Law: At constant volume, the pressure of a gas is directly related to its Kelvin temperature.
c) Why? The KMT says, in a rigid container, as the temperature of a gas increases, its molecules collide against the walls of the container more often \& with greater force which causes the pressure to increase.
2. Demo: steel bell with pressure gauge attached.
a) DATA
b) GRAPH

DO NOT FORGET TO CONVERT TO KELVIN
Double T, Double P

a "direct" relationship
c) FORMULA

$$
\frac{\mathrm{P}}{\mathrm{~T}}=\text { a constant number } \quad \rightarrow \quad \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

3. Refer to Handout. Finish problems.

RCHEM1/Chille
 Gay-LussacsLaw03.m\&e

Gay-Lussac'sLaw - At constant V, P is directly related to T

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

1) If the Kelvin temperature of a gas is doubled, at constant volume, what will happen to its
pressure?
Double T, Doubt Pi Direct relationship

$$
\begin{aligned}
& \text { 2) A gas, in a } 100 \mathrm{ml} \text { rigid container, exerts } 300 \mathrm{kPa} \text { (10 } 0^{\circ} \mathrm{C} \text {. What will be it } \sqrt{\text { pressure }}=\sqrt{20}{ }^{\frac{T}{12}}=20 \\
& { }^{\circ} \mathrm{C} ?
\end{aligned}
$$

$$
\Rightarrow \text { constant } V \rightarrow \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \rightarrow \frac{p_{2}}{283}=\frac{P_{2}}{293}
$$

$$
300 \cdot 293=283 \cdot P_{2}
$$

$$
\begin{aligned}
\frac{300 \cdot 293}{283} & =P_{2} \\
P_{2} & =310.6 \\
& \leftrightarrows 300 \mathrm{kPa}
\end{aligned}
$$

