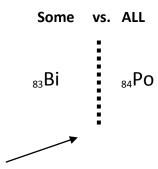
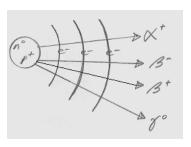

Aim: What is the nature of radioactivity?


1) Radiation- the "stuff" emitted by radioactive elements.

2) All isotopes having an atomic number > 83 are naturally radioactive.

Refer to Periodic Table:

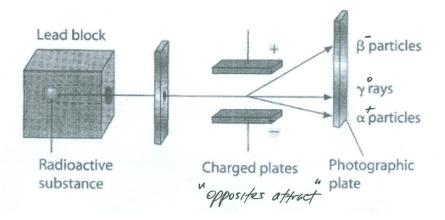

I call this the "radioactivity border" b/c beyond this point, all the isotopes are radioactive.

example:
$$_{92}U^{238}$$
, $_{92}U^{233}$, $_{92}U^{235}$ are all radioactive

Some isotopes with an **atomic number < 83** are also radioactive, but there's no way of knowing other than referring to a **Table N**.

examples: $_{79}$ Au-198, $_{6}$ C-14

3) Radiation comes from the nuclei of radioactive atoms.


Why? These nuclei naturally disintegrate (decay, break down) because they have an unstable neutron to proton ratio (n:p).

4) **Types of radiation**: alpha particle (α^+), beta particles (β^-), positrons (β^+) and gamma rays (γ^0)

Some Common Forms of Radiation

PARTICLE	COMPOSITION	MASS (amu)	CHARGE	NOTATION (TABLE O)	SYMBOL	PENETRATING POWER	Stopped by
Alpha	pr pr	4	+2	4 He or 1 X	X	Low	paper
Beta	e*	1836	-/	e or B	13-	MODERATE	a/uminu
Positron	@+	1836	+/	e or 3	B+	u u	и
Gamma(Rays) Not particles	HIGH Energy X-rays	0	0	· Y	7	HIGH	Lead

NOTE: 1) an alpha particle is also referred to as a helium nucleus; 2) a beta particle is formed when a neutron converts into a proton and an electron; the proton remains in the nucleus while the electron is emitted.