Do Now: Draw the e-dot of CH_{4}. Predict its shape.
Group 14:

Shape: Square
Why not?
$H=\begin{gathered}H \\ C: H \\ : H\end{gathered}$
This dot structure satisfies the OCTET RULE, but it shows the epairs too close to each other. REMEMBER: "Like charges repel each other."
To predict the shape of a molecule you must consider the repulsion between e-pairs in adjacent bonds.

Aim: How can we predict the 3-D shape of a molecule? (molecular geometry)

1. Valence Shell Electron Pair Repulsion Theory (VSEPR) says, since valence shell electron pairs repel each other, molecules take on shapes that keep them as far apart as possible.
Going back to CH_{4},

Square shape
VS.

3D

Picture the C atom in the center of a tetrahedron; the H atoms are in the corners.

To draw this shape more easily, we use 3 lines \& a wedge.
line - points away from you wedge - points towards you

The tetrahedral shape is better b / c the e^{-}pairs in adjacent bonds are further apart.
B) Anytime there are 4 pairs of e^{-}involved in bonds ("bonding pairs") around a central atom, the shape of the molecule will be tetrahedral.

Don't be square. Be tetrahedral, man!
2. NH_{3}

1 "lone pair" of e^{-}- not bonded 3 "bonding pairs"

Shape: Pyramidal

Shape: Angular (bent)

2 lone pairs
2 bonding pairs

4. HCl and $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~F}_{2}$'s

Any molecule consisting of only $\mathbf{2}$ atoms must have a linear shape.

$$
\mathrm{H}-\mathrm{Cl} \quad \mathrm{H}-\mathrm{H} \quad \mathrm{O}=\mathrm{O} \quad \mathrm{~N} \equiv \mathrm{NCl}-\mathrm{Cl} \quad \mathrm{Br}-\mathrm{Br} \quad \mathrm{I}-\mathrm{I} \quad \mathrm{~F}-\mathrm{F}
$$

5. CO_{2} is a "special case" b/c you have to learn more chemistry to explain its shape. So, just remember when there's 2 consecutive double bonds the shape is linear.

$$
: \ddot{0}:: \subset:: \ddot{0}:
$$

$$
0=c=0
$$

Shape: Linear

