Do Now: CO₂ = carbon <u>di</u>oxide, a binary molecular (covalent) compound.

Aim: How do we name binary molecular (covalent) compounds?

I. <u>Using Prefixes</u>

number atoms	prefix
1	mono
2	di
3	tri
4	tetra
5	penta
6	hexa
7	hepta
8	octa
9	nona
10	deca

Given formula, write name

CO monocarbon monoxide

a) Write a prefix for each element, but don't use mono for the 1st element.

b) Change the ending of the 2nd element to **ide**.

CCl₄ carbon tetrachloride

P₂O₅ diphosphorus pentaoxide

c) Usually, vowels in the prefixes are dropped when they precede another vowel.

H₂O dihydrogen monoxide (DHMO aka water)

N₂O₄ dinitrogen tetraoxide

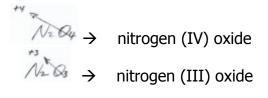
Note: for molecular compounds, **don't reduce** the subscripts unless told to do so. When reduced, the molecular formula becomes an **empirical formula**.

Molecular Formula			
the actual # atoms	the simplest ratio of atoms		
N ₂ O ₄	NO ₂		

Go to Handout: Naming Molecular Compounds

Naming Molecular Compounds

Name the following covalent compounds.


1. CO ₂	Carbon dioxide	
2. CO	Carbon Manoxide	
3. SO ₂	Sulfur dioxide	
4. SO ₃	sulfue trioxide	
5. N ₂ O	dinitrogen monoxide	
6. NO	nitragen monoxide	
7. N ₂ O ₃	dinitrogen trioxide	
8. NO ₂	nitrogen dioxide	
9. N ₂ O ₄	dinitrogen tetra exide	e .
10. N ₂ O ₅	dinitrogen pentaoxide	
11. PCI ₃	phosphorus trick loride	
12. PCI ₅	phosphorus pentachloride	
13. NH ₃	nitrogen trihydride aka	ammonia
14. SCI ₆	sulfue hexachloride	
15. P ₂ O ₅	diphosphorus pentaoxide	
16. CCI ₄	Carbon tetrachloride	
17. SiO ₂	silicon dioxide	
18. CS ₂	carbon disulfide	
19. OF ₂	Oxygen diFluoride	
20. PBr ₃	phosphorus tribromide	

EXTRA CREDIT

II. Using Roman Numerals (Stock System)

The Roman numeral indicates the oxidation state of the first element (+).

Given formula, write name:

a harder problem; can't "cross-criss:"

$$rac{+y}{CO_2}
ightharpoonup$$
 Carbon (IV) oxide

Given name, write formula:

Phosphorus (V) chloride
$$\rightarrow$$
 PCIs

III. Other systems of nomenclature exist; just know the Stock System for ionic compounds and prefixes for molecular compounds.