Aim: How do we calculate the \% composition by mass?

```
% composition = mass of part x 100
    by mass mass of whole
```

1) What is the percent by mass of hydrogen in water?

2) What is the percent by mass of oxygen in $\mathrm{Mg}(\mathrm{OH})_{2}$?

$24+2(16)+2(1)=58 \mathrm{amu}$

$$
\% 0=\frac{32}{58} \times 100=55
$$

3a) What is the percent by mass of water in $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$?

$\% \mathrm{H}_{2} \mathrm{O}=90 / 250 \times 100=36 \%$

In your next lab you will decompose $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$ into CuSO_{4} and $\mathrm{H}_{2} \mathrm{O}$ by heating it in a crucible. The heat energy causes the water to break away from the hydrate.

3b) How many grams of water can be obtained by decomposing 500 g of $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$?
$500 \mathrm{~g} x \quad 0.36=180 \mathrm{~g}$
3c) What is the mass of CuSO_{4} left over?
$555-180=320 \mathrm{~g}$
4) How much Na is present in 25 g of NaCl ?
$\left.1^{\text {st }}\right) \mathrm{NaCl}$
$\begin{aligned} & \text { | । } \\ & 23+35=58 \mathrm{amu}\end{aligned}$
$\left.2^{\text {nd }}\right) \mathrm{Na}=23 / 58 \times 100=40 \%$
$\left.3^{\text {rd }}\right) 25 \mathrm{~g} \times 0.40=10 \mathrm{~g} \quad$ OR In less steps, $25 \mathrm{~g} \times 23 / 58=10 \mathrm{~g}$
5) Which of the following compounds has the greatest \% of S ?
(a) $\mathrm{Na}_{2} \mathrm{~S}$

Atomic mass: 2332
(b) $\mathrm{K}_{2} \mathrm{~S}$

3932
(c) $\begin{array}{r}\mathrm{Rb}_{2} \mathrm{~S} \\ 85 \quad 32\end{array}$
(d) $\mathrm{Cs}_{2} \mathrm{~S}$
$\% S=\frac{32}{((23) 2+32)} \times 100=41$

$$
\% \mathrm{~S}=\frac{32}{((133) 2+32)} \times 100=11
$$

OR Just pick the element with the lightest atomic mass; the sulfur will be a greater part of that whole.

