Aim: How do we solve mole-mole problems?

$$
2 \mathrm{~h}_{2}^{\text {hydrogen }}+1{ }_{2}^{\text {oxygen }} \mathrm{O}_{2}==>2 \text { water }
$$

How many moles of O_{2} are needed to react with 5 moles of H_{2} ?
The coefficients represent moles.

$$
\underset{\text { mole }}{2} \mathrm{H}_{2}+\underset{\text { mole }}{1} \mathrm{O}_{2}===>{\underset{\text { mole }}{2}}_{2}^{\mathrm{H}_{2} \mathrm{O}}
$$

To set up the proportion, just write the \# of moles given in the problem under the coefficients of each substance .

$$
\begin{array}{lll}
\frac{2}{5} & H_{2}+\frac{1}{x} O_{2} & \frac{2}{5}=\frac{1}{x}
\end{array} \quad \begin{array}{rl}
x & x \\
x & =2.5 \text { moles }
\end{array}
$$

How many moles of water are produced when 3 moles of hydrogen react completely?
$\frac{2}{3} \mathrm{H}_{2} \quad==>\frac{2}{x} \mathrm{H}_{2} \mathrm{O} \quad \frac{2}{3}=\frac{2}{x} \quad x=3$ moles

GO TO HANDOUT: mole-mole problems

STOICHIOMETRY:
 MOLE-MOLE PROBLEMS
 nitrogen hydrogen
 ammonia

1.

$$
\left[7 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow\left[2 \mathrm{NH}_{3}\right.\right.
$$

How many moles of hydrogen are needed to completely react with two moles of nitrogen?

$$
\frac{3}{x}=\frac{1}{2} \quad x=6 \mathrm{~mole} \mathrm{~Hz}
$$

pot'chlorate pot'chloude oxygen

2.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?

$$
\frac{3}{x}=\frac{2}{6} \quad 2 x=18 \quad x=9 \text { mole } \mathrm{O}_{2}
$$

