
Aim: What factors affect solubility? Part 2

1) **SOLIDS**

Demo: More tea dissolves in hotter water.

A) Therefore, <u>higher</u> **temperature**, <u>higher</u> solubility of **solids**.

<u>Demo:</u> "Plunging down" on a tea/water mixture doesn't make more tea dissolve.

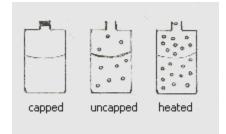
B) Changing the **pressure** has <u>no effect</u> on the solubility of solids.

WHY? Solids are incompressible.

2) **LIQUIDS** – Liquids behave like solids, but the effect of temperature is smaller.

3) GASES

<u>Demo</u>: seltzer = carbonated water = CO₂ (aq)

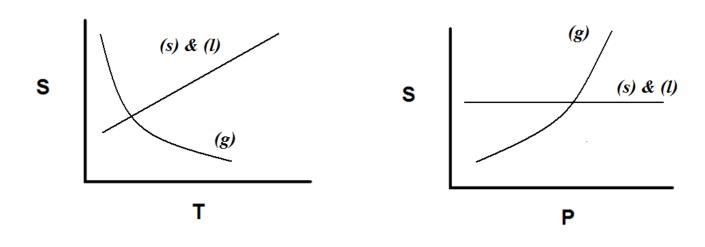

When the bottle is capped you don't see bubbles because the CO_2 (g) is dissolved in the water. It's a homogeneous mixture (solution).

$$H_2O$$
 CO_2 (g) ===> CO_2 (aq)

<u>Demo:</u> Bubbles appear *when a bottle of seltzer is uncapped. *effervescence – the sudden appearance of a gas in a liquid.

NOTE: Bubbles that you see is gas that is NOT dissolved.

A) Therefore, <u>lower</u> **pressure**, <u>lower</u> solubility of gases.


<u>Demo:</u> When the seltzer is heated more bubbles appear.

B) Therefore, <u>higher</u> **temperature**, <u>lower</u> solubility of gases.

So, to make seltzer, you want <u>HIGH</u> pressure and <u>LOW</u> temperature.

(Finally, why do more bubbles appear after shaking the bottle? Turning over the liquid increases surface area, thereby, releasing more gas.)

In Summary,		
	Ssolids & liquids	Sgases
↑ T EMPERATURE	↑	\
↑ P RESSURE	no effect	1

