Aim: How do chemists specify the concentration of a solution?

Table T: Molarity \& Parts per Million

Molarity $-\frac{\text { moles of solute }}{\text { liter of solution }}$
solution $=$ solute + solvent
Example: salt water salt + water

Say, "moles per liter".

Demo: preparing $\mathbf{1 . 0}$ liter of a $\mathbf{1 . 0}$ Molar $\mathbf{N a C l}(\mathrm{aq})$
 concentration

$1.0 \mathrm{M}=1.0$ mole / 1.0 L
Step 1) NaCl
$23+35=58 \mathrm{~g} / \mathrm{mole}$
Weigh 58 g NaCl .
2) Transfer it into a volumetric flask.
3) Fill with $\mathrm{H}_{2} \mathrm{O}$ to the 1 liter mark.

4) Stopper \& shake.
(Note: Since we placed the salt in the flask before adding the water, the combined volume is that of the salt plus the water.)

What if you want less solution? Use a smaller flask, but just keep the same ratio.
$\underline{1 \text { Mole }}=\underline{0.5}=\underline{0.25}=\underline{0.1} \ldots$ etc \quad Go to Sample Problems $\begin{array}{llll}1 \mathrm{~L} & 0.5 & 0.25 & 0.1\end{array}$

Chemistry 2 Chille
molarity

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liter of solution }}
$$

1) Given: 3 moles of NaOH dissolved in 1.5 L of solution. Find M.

$$
M=\frac{\text { mole }}{L} \quad M=\frac{3}{1.5} \quad M=2
$$

2) Given: 2 moles of NaOH dissolved in 250 ml of solution. Find M .

$$
M=\frac{\text { mole }}{L} \quad M=\frac{2}{0.250} \quad M=8
$$

3) How many moles of HCl are contained in 5 L of a 1.5 m solution?

$$
M=\frac{\text { mole }}{L} \quad 1.5=\frac{\text { mole }}{5} \quad \text { mole }=5(1.5)=7.5
$$

4) How many L of a 6 M solution contains 3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
M=\frac{\text { mole }}{L} \quad 6=\frac{3}{L} \quad 6(L)=3 \quad L=\frac{3}{6}=0.5
$$

5) Given: 147 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in 500 ml of solution. Find M.
6) How many g of NaOH are contained in 750 ml of 4 M solution?

$$
750 \mathrm{ML}=0.75 \angle
$$

$$
\mathrm{NaOH} \quad M=\frac{\text { mole }}{L} \quad 4=\frac{\text { mole }}{0.75} \quad 4(0.75)=\text { mole }=3
$$

$23+16+1=\frac{40 \mathrm{~g}}{\text { mole }} \quad$ moles $=\frac{\text { given mass }}{g F m} \quad 3$ mole $\quad=\frac{g 1 v e n \text { mass }}{40 \mathrm{~g}} \quad$ given mass $=120 \mathrm{~g}$
7) In what volume must 72 g of HCl be dissolved to make a 4 M solution?

$$
\begin{aligned}
& \begin{array}{lll}
\text { Hel } & \text { \# moles }=\frac{\text { given mass }}{\text { GaM }} \\
1+35=36 \mathrm{~g}
\end{array} \quad M=\frac{\text { mole }}{L} \quad L=\frac{2}{4}=0.5 \\
& \text { mole \# moles }=\frac{729}{36 \mathrm{~g} / \text { mole }}=2 \\
& 4=\frac{2}{L} \\
& 4(L)=2
\end{aligned}
$$

