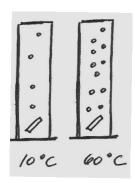
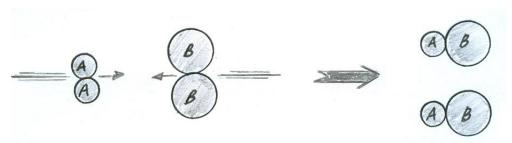
reaction: A + B ===> AB


Aim: What factors affect REACTION RATE?

-how fast A collides with B to form AB

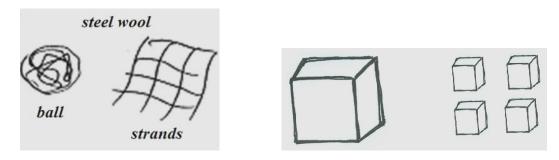
1. TEMPERATURE

DEMO: Alka seltzer in water


{higher temperature, faster reaction rate}

Why? At a <u>higher</u> temperature, the particles of reactants collide <u>more</u> often and with <u>greater</u> force.

Force is needed to break the chemical bonds in the reactants.


$$A_2 + B_2 ===> 2 AB$$

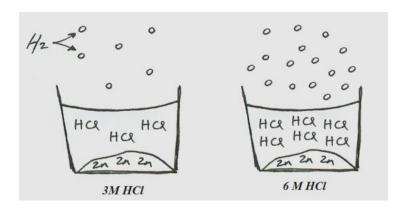
In other words, the *frequency* and the *effectiveness* of the collisions increase.

2. PARTICE SIZE


DEMO: burning steel wool

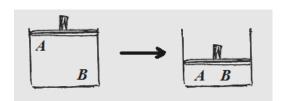
{smaller particle size, greater total surface area, faster reaction rate}

Why? More reactant is exposed which leads to more collisions per second between particles of reactants.


DEMO: burning lycopodium powder

3. Concentration (Molarity = moles/Liter)

DEMO: reacting zinc in hydrochloric acid


{greater concentration, faster reaction rate}

Why? More reactant in the same volume leads to more collisions per second.

4. Pressure

$$A(g) + B(g) \rightarrow AB(g)$$

{smaller volume of container, higher pressure of gases, faster reaction rate}

Why? Less space leads to more collisions per second.

<u>Note:</u> Increasing the pressure by decreasing the volume of the container, increases the concentration.

M = moles