Questions VI-1

Base the answers to the following questions, 1 and 2, on the potential diagram and reaction shown.

1 Compared to the activation energy of the forward reaction, the activation energy of the reverse reaction is:

(a) less

(2) greater

(3) the same

2 Compared to the potential energy of the activated complex of the forward reaction, the potential energy of the activated complex of the reverse reaction is (1) less

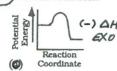
(2) greater (a) increases

(the same As the temperature of a chemical reaction increases, the rate of reaction:

(3) remains the same A EFFECTIVENESS

Reaction Coordinate

Which diagram shows the potential energy of an exothermic reaction?

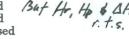


Reaction Coordinate

Reaction (3)Coordinate

Energy

Potential


Which will occur if a catalyst is added to a reaction mixture?

the activation energy will be changed

(2) only the rate of the forward reaction will be increased

(3) only the rate of the reverse reaction will be increased

(4) the energy charge (ΔH) of the reaction will be decreased

{ DH = Ho-Ha = Eag - Eag } refer to DIAG FOR QI

6 In a reversible reaction, the difference between the activation energy of the forward reaction and the activation energy of the reverse action is equal to the

(1) activation complex

(3) potential energy of reactants

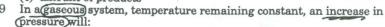
(a) heat of reaction (AH) (4) potential energy of products 7 If the concentration of one of the reactants in a chemical reaction is increased, the rate of the reaction usually:

(1) decreases

increases

increases

(3) remains the same


8 In a chemical reaction, the use of a catalyst usually results in a decrease

activation energy (Ea

(2) potential energy of the reactants

(3) heat of reaction

(4) amount of products

(1) increase activation energy

(2) decrease activation energy

(a) increase reaction rate (4) decrease reaction rate

More collisions

WITA

10 The graph on the right represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex?

(1) A (C) B (3) C

(4) D Base your answer to questions 11 and 12

on the potential energy is the potential energy in the potential energy in the potential energy in the potential energy is the potential energy in the potent A = REACTANTS C = Nothing on the potential energy diagram at the

11 The reaction

right.

 $A(g) + B(g) \rightarrow C(g) + D(g) + 30 \text{ kcal}$ has a forward activation energy of 20 kcal. What is the activation energy for the reverse reaction? (1) 10 kcal

(2) 20 kcal

(3) 30 kcal 60 kcal

30 + 20 = 50

Potential nergy (kcal)

Energy

W

12 The potential energy of the activated complex is equal to the sum of: (1) X + Y(a) X + W (3) X + Y + W (4) X + W + Z

Base your answers to the following questions, 13 (below) and 14 (next page), on the diagram at the right.

13 The activation energy for the reverse reaction is represented by

 $(1) 1 = H_r$ (2) 2 = Eac

(3) $3 = \Delta H$ (4 = Ear Reaction Coordinate

Reaction Coordinate

Reaction Coordinate

C(g)+D(g)

14 The heat of reaction (ΔH) is represented by: (1) T

15 The effect of a catalyst on a chemical reaction is to change the: (activation energy (3) potential energy of the product (2) heat of reaction (4) potential energy of the reactant

16 Consider the reaction: $H_2O(l)$ then $H_2(g) + \frac{1}{2}O_2(g)$. Which phrase best describes this reaction?

(1) exothermic, releasing energy

(2) exothermic, absorbing energy (3) endothermic, releasing energy

endothermic, absorbing energy