PEDiag4 HW

- In order for a chemical reaction to occur, there must always be
- (1) an effective collision between reacting particles
 - (2) a bond that breaks in a reactant particle
 - (3) reacting particles with a high charge
 - (4) reacting particles with high kinetic energy
- 2 As the number of effective collisions between reacting particles increases, the rate of reaction
 - (1) decreases
 - (2) increases
 - (3) remains the same
- 3 Activation energy is required to initiate
 - (1) exothermic reactions only
 - (2) endothermic reactions only
 - (3) both endothermic and exothermic reactions
 - (4) neither endothermic nor exothermic reactions
- 4 In a chemical reaction, as the concentrations of the reacting particles increase, the rate of reactions generally
 - (1) decreases
 - (2) increases
 - (3) remains the same
 - (4) reaches equilibrium
- 5 Which conditions will increase the rate of a chemical reaction?
 - decreased temperature and decreased concentration of reactants
 - (2) decreased temperature and increased concentration of reactants
 - (3) increased temperature and decreased concentration of reactants
 - increased temperature and increased concentration of reactants
- 10 Adding a catalyst to a chemical reaction will
 - (1) lower the activation energy needed
 - (2) lower the potential energy of the reactants
 - (3) increase the activation energy
 - (4) increase the potential energy of the reactants
- 11 Given the potential energy diagram below, which lettered interval represents the potential energy of the activated complex?

- (1) A
- (3) C
- (2) B
- (4) D
- 12 The graph above is a potential energy diagram of a compound that is formed from its elements. Which interval represents the heat of reaction?

- 6 What will change when a catalyst is added to a chemical reaction?
 - (1) activation energy
 - (2) heat of reaction
 - (3) potential energy of the reactants
 - (4) potential energy of the products
- 7 The energy needed to start a chemical reaction is called
 - (1) potential energy
 - (2) kinetic energy
 - (3) activation energy
 - (4) ionization energy

Use the potential energy diagram of a chemical reaction shown below to answer questions 8 and 9.

- 8 Which arrow represents the part of the reaction most likely to be changed by the addition of a catalyst?
 - (1) A
- (3) C
- (2) B
- (4) D
- 9 Which letter represents the activation energy for the reverse reaction?
 - (1) A (2) B
- (3) C
- ,
- (4) D

randomness

- 14 As the temperature of a system increases, the entropy of the system entropy = disorder,
 - (1) decreases
- (2) increases
- (3) remains the same
- 15 Which potential energy diagram represents the reaction $A + B \rightarrow C + \text{energy}$?

Base your answers to Questions 11 and 12 on the diagram below, which represents the reaction:

$$A + B \rightarrow C + energy$$

- 11. Which statement correctly describes this reaction?
 - (1) It is endothermic and energy is absorbed.
 - (2) It is endothermic and energy is released.
 - (3) It is exothermic and energy is absorbed.
 - (4) It is exothermic and energy is released.
- 12. Which numbered interval will change with the addition of a catalyst to the system?

 - (2) 2
 - (3) 3
 - (4) 4
- 13. A potential energy diagram of a chemical system is shown below.

What is the difference between the potential energy of the reactants and the potential energy of the products?

- (1) 20. kcal
- (2) 40. kcal
- (3) 60. kcal
- (4) 80. kcal
- **14.** Consider the reaction for which $\Delta H = +33$ kJ/mol.

$$N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$$

The potential energy diagram of the reaction is shown below.

Which arrow represents the heat of reaction for the reverse reaction?

- (1) 1
- (2) 2
- (3) 3
- (4) 4

15. The potential energy diagram of a chemical reaction is shown below.

Which letter in the diagram represents the heat of reaction?

- (1) A
- (2) B
- (3) C
- (4) D
- 16. A potential energy diagram is shown below.

Which reaction would have the lowest activation energy?

- (1) the forward catalyzed reaction
- (2) the forward uncatalyzed reaction
- (3) the reverse catalyzed reaction
- (4) the reverse uncatalyzed reaction
- 17. In the potential energy diagram below, which arrow represents the potential energy of the activated complex?

- (1) A
- (2) B
- (3) C
- (4) D