1) DEMO: burning methanol (l)
(a) Refer to Table I

$$
2 \mathrm{CH}_{3} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

methanol liquid "feels hot"

$$
\Delta \mathrm{H}=-1452 \mathrm{~kJ}
$$

minus sign, exothermic
Note: $2 \mathrm{C}_{8} \mathrm{H}_{18}, \Delta \mathrm{H}=-10,943 \mathrm{~kJ} ;\{$ more $-\Delta \mathrm{H}$, more heat released $\}$
(b) In an exothermic reaction the heat released is placed on the product side.

$$
2 \mathrm{CH}_{3} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1452 \mathrm{~kJ}
$$

*Don't write the (-) in the equation!
(c) P.E. diagram

(d) If the $E a_{\text {forward }}=50 \mathrm{~kJ}$, what is the $E a_{\text {reverse }}$?

Referring to the PE diagram, the Ea reverse is the energy needed for the products to go backwards in forming the reactants. Therefore, the Eareverse would be the sum of the $\Delta \mathrm{H}$ with its sign reversed, plus the Eaforward.

$$
\text { Answer: } 1452+50=1502 \mathrm{~kJ}
$$

Or, if you prefer you can use the following formula, but don't forget to use a minus sign for exothermic reactions.
$\Delta H=E a_{f}-E a_{r}$
$-1452=50-x$
$-1502=-x \quad \longrightarrow \quad x=1502 \mathrm{~kJ}$

DEMO: burning methanol vapor (g)
greater surface area
faster reaction rate

CAUTION Never try this at home!!
(e) How much heat is involved when 3 moles of $\mathrm{CH}_{3} \mathrm{OH}$ undergo combustion?

Going back to the chemical equation, remember the coefficients represent molar quantities. So, just set up a ratio.

$$
\frac{2}{3} \mathrm{CH}_{3} \mathrm{OH}=\frac{1452}{\mathrm{x}} \mathrm{~kJ} \longrightarrow \mathrm{x}=2178 \mathrm{~kJ} \text { released }
$$

If time permits,
How many KJ are released by the complete combustion of $16 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}$?

