## Aim: How do we use HEATS of REACTION (ΔH)? Table I

- 1) DEMO: burning methanol (l)
- (a) Refer to Table I

$$2 CH_3OH(l) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 4 H_2O(l)$$



minus sign, exothermic

**Note:** 2  $C_8H_{18}$ ,  $\Delta H = -10,943$  kJ; {more  $-\Delta H$ , more heat released}

(b) In an exothermic reaction the heat released is placed on the product side.

$$2 CH_3OH_{(l)} + 3 O_{2(g)} \longrightarrow 2 CO_{2(g)} + 4 H_2O_{(l)} + 1452 kJ$$

\*Don't write the (-) in the equation!

## (c) P.E. diagram



(d) If the  $Ea_{forward} = 50 \text{ kJ}$ , what is the  $Ea_{reverse}$ ?

Referring to the PE diagram, the  $Ea_{reverse}$  is the energy needed for the products to go backwards in forming the reactants. Therefore, the  $Ea_{reverse}$  would be the sum of the  $\Delta H$  with its sign reversed, plus the  $Ea_{forward}$ .

Answer: 1452 + 50 = 1502 kJ

Or, if you prefer you can use the following formula, but don't forget to use a minus sign for exothermic reactions.

## $\Delta H = E_{a_f} - E_{a_r}$

$$-1452 = 50 - x$$

$$-1502 = -x$$

x = 1502 kJ

## DEMO: burning methanol vapor (g)

<u>greater</u> surface area faster reaction rate



**CAUTION** Never try this at home!!

(e) How much heat is involved when 3 moles of CH<sub>3</sub>OH undergo combustion?

Going back to the chemical equation, remember the coefficients represent molar quantities. So, just set up a ratio.

$$\underline{2} \text{ CH}_3\text{OH} = \underline{1452} \text{ kJ} \longrightarrow x = 2178 \text{ kJ released}$$

If time permits,

How many KJ are released by the complete combustion of 16 g CH<sub>3</sub>OH?