Review Questions

- 18. Which factors must be equal when a reversible chemical process reaches equilibrium?
 - (1) mass of the reactants and mass of the products
 - (2) rate of the forward reaction and rate of the reverse reaction
 - (3) concentration of the reactants and concentration of the products
 - (4) activation energy of the forward reaction and activation energy of the reverse reaction
- 19. A solute is added to water and a portion of the solute remains undissolved. When equilibrium between the dissolved and undissolved solute is reached, the solution must be
 - (1) dilute
 - (2) saturated
 - (3) unsaturated
 - (4) supersaturated
- **20.** Which description applies to a system in a sealed flask that is half full of water?
 - (1) Only evaporation occurs, but it eventually stops.
 - Only condensation occurs, but it eventually stops.
 - Neither evaporation nor condensation occurs.
 - (4) Both evaporation and condensation occur.
- 21. Solution equilibrium always exists in a solution that is
 - (1) unsaturated
- (3) dilute
- (2) saturated
- (4) concentrated
- 22. Given the reaction at equilibrium:

$$A(g) + B(g) \rightleftharpoons C(g) + D(g)$$

The addition of a catalyst will

- (1) shift the equilibrium to the right
- (2) shift the equilibrium to the left
- (3) increase the rate of forward and reverse reactions equally
- (4) have no effect on the forward or reverse reactions
- 23. If a catalyst is added to a system at equilibrium and the temperature and pressure remain constant, there will be no effect on the
 - (1) rate of the forward reaction
 - (2) rate of the reverse reaction
 - (3) activation energy of the reaction
 - (4) heat of reaction
- **24.** Consider the equation for the following reaction at equilibrium.

$$X + Y \rightleftharpoons 2Z + heat$$

The concentration of the product could be increased by

- (1) adding a catalyst
- (2) adding more heat to the system
- (3) increasing the concentration of Y
- (4) decreasing the concentration of X
- **25.** In a reversible reaction, chemical equilibrium is attained when the
 - rate of the forward reaction is greater than the rate of the reverse reaction
 - (2) rate of the reverse reaction is greater than the rate of the forward reaction
 - (3) concentration of the reactants reaches zero
 - (4) concentration of the products remains constant

26. Consider the following equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + heat$$

What stress would cause the equilibrium to shift to the left?

- (1) increasing the temperature
- (2) increasing the pressure
- (3) adding $N_2(g)$ to the system
- (4) adding $H_2(g)$ to the system
- Consider the equation for the following reaction at equilibrium.

$$CaSO_4(s) \rightleftharpoons Ca^{2+} (aq) + SO_4^{2-} (aq)$$

When Na₂SO₄ is added to the system, how will the equilibrium shift?

- (1) The amount of CaSO₄ will decrease, and the concentration of Ca²⁺(aq) will decrease.
- (2) The amount of CaSO₄ will decrease, and the concentration of Ca²⁺(aq) will increase.
- (3) The amount of $CaSO_4$ will increase, and the concentration of $Ca^{2+}(ag)$ will decrease.
- (4) The amount of CaSO₄ will increase, and the concentration of Ca²⁺(aq) will increase.
- 28. Consider the following equation.

$$Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

As the concentration of the HCI(aq) decreases at constant temperature, the rate of the forward reaction

- (1) decreases
- (2) increases
- (3) remains the same
- 29. Consider the following equation.

$$H_2(g) + F_2(g) \rightleftharpoons 2HF(g) + heat$$

Which change will not shift the point of equilibrium?

- (1) changing the pressure
- (2) changing the temperature
- (3) changing the concentration of $H_2(g)$
- (4) changing the concentration of HF(g)
- 30. Consider the following equation.

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

As the pressure increases at constant temperature, the mass of $H_2(g)$

- (1) decreases
- (2) increases
- (3) remains the same

31. Consider a reaction at STP and at equilibrium.

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

Which change will result in an increase in the concentration of $Cl_2(g)$?

- (1) decreasing the pressure on the system
- (2) decreasing the concentration of HCI
- (3) increasing the concentration of $H_2(g)$
- (4) increasing the concentration of HCl
- 32. Consider the following equation.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

As the concentration of $N_2(g)$ increases, the concentration of $O_2(g)$ will

- (1) decrease
- (2) increase
- (3) remain the same
- 33. Consider the following equation.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + heat$$

Which change will shift the equilibrium to the right?

- (1) decreasing the concentration of SO₂
- (2) decreasing the pressure
- (3) increasing the concentration of O₂
- (4) increasing the temperature

- **34.** The addition of a catalyst to a system at equilibrium will increase the rate of
 - (1) the forward reaction only
 - (2) the reverse reaction only
 - (3) both the forward and reverse reactions
 - (4) neither the forward nor the reverse reaction
- **35.** A system is said to be in a state of dynamic equilibrium when the
 - (1) concentration of products is greater than the concentration of reactants
 - (2) concentration of products is less than the concentration of reactants
 - (3) rate at which products are formed is greater than the rate at which reactants are formed
 - (4) rate at which products are formed is the same as the rate at which reactants are formed