Aim: How do we explain the behavior of acids?

1. Table K Common Acids

$$
\begin{array}{ll}
& \text { ionization } \\
\mathrm{HCl}_{(\mathrm{aq})} & =\mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} & =\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) & =3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{-2} \\
& =3 \mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{PO}_{4}^{-3}(\mathrm{aq})
\end{array}
$$

Ionization - when a covalent compound reacts with water to form ions.
According to Arrhenius, acids are substances that produce hydrogen ions in water.

$\mathrm{H}^{+}{ }_{(\text {aq })}$ ions are responsible for acidic properties = sour taste, caustic, corrosive, turn litmus red, neutralize bases, etc...
2. The strongest acids in Table K are $\mathrm{HCl}, \mathrm{HNO}_{3} \& \mathrm{H}_{2} \mathrm{SO}_{4}$; the rest are weaker. (Note: It's not just the \# of H's that determines the strength of an acid.)
3. How can you tell which acid is stronger experimentally? HCl vs. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
A. Test electrical conductivity.

DEMO: conductivity apparatus
Results: $\{$ stronger acid, greater conductivity, brighter light\}
B. Test reactivity with a metal or stone.

DEMO: reaction with marble chips $\left(\mathrm{CaCO}_{3}\right)$
Results: \{stronger acid, faster rate of reaction, more bubbles\}

C. Test pH.

DEMO: pH meter or paper
Results: $\{$ stronger acid, lower pH \}
(We will discuss this in depth in a future lesson.)
P.S. Testing with litmus and phenolphthalein will tell apart an acid from a base, but won't distinguish a strong acid from a weak acid b / c the results are the same. Litmus is red and "pheno" is colorless in any acid.
4. Why is HCl a stronger acid than $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$?

HCl ionizes much more than $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and thereby produces more hydrogen ions.

(Actually, the difference is greater than what is depicted. HCl is almost 100% ionized, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is less than 10%)

\{stronger acid, higher \%ionization, greater $\left.\left[\mathrm{H}^{+}\right]\right\}$

5. What is a H^{+}ion?

Actually, it's a proton that is desperately seeking 2 electrons.

And, technically, $\mathbf{H}^{+}(\mathrm{aq})=\mathrm{H}_{3} \mathrm{O}^{+}$. That is, a hydrogen ion in water turns into a hydronium ion.

The bond formed with water is called a coordinate covalent bond b/c one atom is providing both electrons that are shared.

IF TIME PERMITS,
A Closer Look: $\quad \mathrm{CO}_{2(a q)}=\mathrm{H}_{2} \mathrm{CO}_{3(a \mathrm{aq})}$
Carbon dioxide dissolved in water turns into carbonic acid. That's why seltzer has a tart taste.

DEMO: blowing CO_{2} into water with a straw
Result: pH decreases
Also, $\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5} \ldots$ That is, nonmetal oxides are acidic.

