Aim: How do we explain the behavior of acids?

1. Table K **COMMON** ACIDS

	ionizatio	n		
HCI(aq)	=	H ⁺ (aq)	+	Cl ⁻ (aq)
H ₂ SO ₄ (aq)	=	2H ⁺ (aq)	+	$SO_4^{-2}(aq)$
H ₃ PO _{4(aq)}	=	3H ⁺ (aq)	+	$PO_4^{-3}(aq)$

lonization – when a covalent compound reacts with water to form ions.

According to **Arrhenius**, acids are substances that produce hydrogen ions in water.

	H ₂ O	
{ <mark>Acids</mark>	====>	H ⁺ (aq)}

 $H^{+}_{(aq)}$ ions are responsible for acidic properties = sour taste, caustic, corrosive, turn litmus red, neutralize bases, etc...

- 2. The strongest acids in Table K are HCl, HNO_{3 & H2}SO₄; the rest are weaker. (Note: It's not just the # of H's that determines the strength of an acid.)
- 3. How can you tell which acid is stronger experimentally? HCl vs. HC₂H₃O₂
 - A. Test electrical conductivity.

<u>DEMO</u>: conductivity apparatus <u>Results</u>: <u>{stronger</u> acid, <u>greater</u> conductivity, <u>brighter</u> light}

B. Test reactivity with a metal or stone.

<u>DEMO:</u> reaction with marble chips (CaCO₃) <u>Results</u>: <u>{stronger</u> acid, <u>faster</u> rate of reaction, <u>more</u> bubbles}

C. Test pH.

<u>DEMO:</u> pH meter or paper <u>Results</u>:{<u>stronger</u> acid, <u>lower</u> pH} (We will discuss this in depth in a future lesson.) **P.S.** Testing with litmus and phenolphthalein will tell apart an acid from a base, but won't distinguish a strong acid from a weak acid b/c the results are the same. Litmus is red and "pheno" is colorless in any acid.

4. Why is HCI a stronger acid than $HC_2H_3O_2$?

HCl ionizes much more than $HC_2H_3O_2$ and thereby produces more hydrogen ions.

(Actually, the difference is greater than what is depicted. HCl is almost 100% ionized, $HC_2H_3O_2$ is less than 10%)

{stronger acid, higher %ionization, greater [H⁺]}

5. What is a H^+ ion?

Actually, it's a **proton** that is desperately seeking 2 electrons.

And, technically, $H^{+}(aq) = H_3O^{+}$. That is, a hydrogen ion in water turns into a hydronium ion.

The bond formed with water is called a **coordinate** covalent bond b/c one atom is providing both electrons that are shared.

IF TIME PERMITS,

A Closer Look : $CO_2(aq) = H_2CO_3(aq)$

Carbon dioxide dissolved in water turns into carbonic acid. That's why seltzer has a tart taste.

<u>DEMO</u>: blowing CO₂ into water with a straw Result: pH decreases

Also, NO₂, SO₂, P₂O₅...That is, **non**metal oxides are **acidic**.