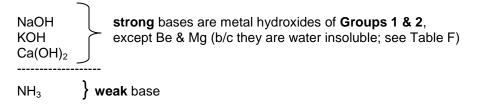

Aim: How do we explain the behavior of bases?

1) TABLE L: COMMON BASES

disso	ociatio	n
NaOH(aq)	=	$Na^+_{(aq)} + OH^{(aq)}$
KOH _(aq)	=	$K^+(aq)$ + $OH^-(aq)$
Ca(OH) _{2(aq)}	=	Ca ⁺² (aq) +2 OH ⁻ (aq)
NH3(aq) + H ₂ C	D(<i>I</i>)	ionization = $NH4^+(aq) + OH^-(aq)$


Dissociation –the separation of ions from an ionic compound upon dissolving in water.

According to Arrhenius, bases are substances that produce hydroxide ions in water.

OH⁻(aq) ions are responsible for basic properties = bitter taste, slippery, conduct electricity, turn litmus blue, neutralize acids, etc...

2) Relative Strengths of Bases in Table L

Which of the following is the strongest base?

	a) Mg(OH) 2	b) AI(OH)з	c) LiOH
TABLE F	Grp 2, insoluble	Grp 13, insoluble	Grp 1, soluble, strongest

3) How can you tell which is the stronger base experimentally? NaOH vs. NH₃

A. Test conductivity of solutions.

<u>DEMO:</u> conductivity apparatus Results: {<u>stronger</u> base, <u>greater</u> conductivity, <u>brighter</u> light}

B. Test pH

<u>DEMO:</u> pH meter or paper Results: { <u>stronger</u> base, <u>higher</u> pH} P.S. Testing with litmus and phenolphthalein will tell apart an acid from a base, but won't distinguish a strong base from a weak base b/c the results are the same. Litmus is blue and "pheno" is pink in any acid.

4) Why is NaOH a stronger base than NH₃?

stronger base, higher %dissociation(ionization), greater [OH-]

IF TIME PERMITS

5) A Closer Look:

Demo: burning magnesium

MgO, K₂O, CaO...**Metal** oxides are **basic.**