DEMO: Test conductivity of pure H₂O; big bulb vs. small

Observation: Dim light with small bulb

<u>Conclusion</u>: H_2O is a poor conductor. This means [ions] is very small.

Which ions? $H_2O(l) = H^+(aq) + OH^-(aq)$ HOH

This is called, the <mark>"AUTOIONIZATION" of water</mark>; it is the basis of the pH scale.

Aim: What is the basis of the pH scale?

1. (a) In pure water, $[H^+] = [OH^-] = 0.00000010 = 1.0 \times 10^{-7} M$

 $\frac{H^+ \quad OH^-}{\triangle} \qquad pH = 7, \text{ called "neutral"}$

(b)Technically pH = -log [H⁺], but for this course, think of pH as the "power of [H⁺]". That is, $\{ [H^+] = 1.0 \times 10^{-pH} \}$

 $\begin{array}{ccc} \underline{pH} & \underline{[H^{\dagger}]} \\ 7 & 1.0 \times 10^{-7} \text{ M} \end{array} \xrightarrow{\text{Note: } pH, \quad [H^{\dagger}]} \\ 6 & 1.0 \times 10^{-6} \text{ M} \end{array} \xrightarrow{\text{Note: } pH, \quad [H^{\dagger}]} \\ \underline{Why}? \text{ because they are negative exponents} \end{array}$

(c) Also, $\frac{1.0 \times 10^{-6}}{1.0 \times 10^{-7}} = 10^{-6 - (-7)} = 10^{1} = 10^{1}$

This means $[H^{\dagger}]$ at pH = 6 is 10x greater than $[H^{\dagger}]$ at pH = 7. In other words, there's a 10 fold difference between consecutive pH units.

For example,

Which has a greater $[H^+]$, pH = 3 vs. pH = 5? Ans: pH = 3 How much greater?

$$3 \xrightarrow{10x} 10x \\ 4 \xrightarrow{4} 5 \\ 10^{-3} 10^{-4} 10^{-5}$$

2. All (aq) solutions contain H^* and OH^* . The type of solution depends on which ion there is more of.

рН	[H⁺]	[OH ⁻]	solution
7	1.0 x 10 ⁻⁷ M	1.0 x 10 ⁻⁷ M	neutral
6	1.0 x 10 ⁻⁶ M	1.0 x 10 ⁻⁸ M	acidic
8	1.0 x 10 ⁻⁸ M	1.0 x 10 ⁻⁶ M	basic
11	1.0 x 10 ⁻¹¹ M	1.0 x 10 ⁻³ M	basic

* In any (aq) solution, the exponents of $[H^+]$ and $[OH^-]$ will add up to -14 b/c the $[H^+]x[OH^-] = 1.0 \times 10^{-14} = Kw$, "water ionization constant".