Table L Common Bases: NH₃ (aq) = "ammonia water"

H₂O According to Arrhenius, Bases -----> OH⁻ (aq)

How does ammonia do this?? We need an alternate theory to explain A/B behavior?

Aim: What is an alternate theory explain A/B behavior?

1st, take the H_2O out of the (aq) and react it with NH_3 .

 $NH_3 + H_2O = NH_4^+ + OH^-$

2nd, notice which species gains or loses H⁺.

$$NH_3 + H_2O = NH_4^+ + OH^-$$

According to an alternate theory (aka Bronsted- Lowry Theory):

1) A/B reactions involve the **transfer of protons (H⁺).** The species (substance) that donates (loses) an H⁺ is the ACID; the species that accepts (gains) an H⁺ is the BASE.

$$NH_3 + H_2O = NH_4^+ + OH^-$$

Base
gains H*Acid
loses H*proton
acceptorproton
donor

(In this case, since the H_2O is more willing to donate a H^+ than accept a H^+ , it acts as an acid. On the other hand, since the NH_3 is more willing to accept a H^+ than donate a H^+ , it acts as a base)

2) Whether a substance acts as an acid or a base depends on what it reacts with. (In other words, A/B designations are relative.)

 $\begin{array}{cccc} \mathsf{NH}_3 & + & \mathsf{O}^{-2} & = & \mathsf{OH}^- & + & \mathsf{NH}_2^- \\ \mathsf{A} & & \mathsf{B} \end{array}$

3) Since A/B reactions are reversible, in every A/B reaction there are two acids and two bases.

NH ₃ +	0 ⁻²	$\stackrel{\bullet}{\longleftarrow}$	OH	+	NH_2^{-1}
A	В		А		В

(NOTE: The direction favored by nature depends on the relative strengths of the acids and bases)

4) A Conjugate A/B Pair = is an acid/base couple that differ only by 1 H⁺

Lose	H ⁺ >

	<mark><gain h<sup="">+</gain></mark>
ACID	BASE
NH4 ⁺	NH ₃
OH ⁻	0-2
H ₃ O ⁺	H ₂ O
HCI	Cl
HNO ₃	NO ₃
H ₂ SO ₄ HCN	HSO ₄
HCN	

Note: the charge changes because a hydrogen ion has a +1 charge; therefore, in going from the acid to the base, remove an H and subtract a +1 from the initial charge.

5) Amphiprotic – a specie that can gain or lose an H⁺ depending upon what it reacts with. For example,

 OH^{-} <-----> H_2O -----> H_3O^+

Note: to be amphiprotic, it must have at least 1 H.