Demo: burning Mg in O2, called an "oxidation" reaction

<u>Why</u>? 2 Mg + $O_2 \rightarrow 2$ MgO

Burning Mg in Cl_2 is also an "oxidation" reaction.

How so?

<u>Aim:</u> What is the meaning of oxidation?

1) Looking at valence e

 Mg
 O2
 Mg
 Cl2

 metal ,
 nonmetal,
 "same story"

 loses e⁻
 gains e⁻

- a) Therefore, **<u>oxidation</u>** is the **loss** of e⁻.
- b) On the other hand, **<u>reduction</u>** is the **gain** of e⁻
- c) Altogether, it's called a **<u>Redox</u>** reaction.
- d) We say "Mg got oxidized, while O₂ got reduced".

Remember: L.E.O. the lion says, G.E.R.

2) What happens to the charges of the atoms?

Due to oxidation the charge (oxidation #) **increases**. Due to reduction, the charge (oxidation #) **decreases**.

3) How do we represent this with an equation?

$Mg \rightarrow Mg^{+2} + 2e^{-1}$	$0 + 2e^{-} \rightarrow 0^{-2}$
Electrons lost are placed on the product side.	Electrons gained are placed on the reactant side.

ı.

These are called "half reactions".

b) Check: atoms balance & charges balance.

In other words, Redox reactions "conserve mass and charge."

4) What do we call the agents?

Mg	Ο
got oxidized,	got reduced,
it's a reducing agent	it's an oxidizing agent

Remember: "The travel agent doesn't travel."

AGAIN, memorize this!

REDOX	
Reduction	Oxidation
G.E.R	L.E.O
Oxidation #↓	Oxidation # 1
Oxidizing Agent	Reducing Agent

SEE HANDOUT ON NEXT PAGE

To remember what reactions involve losses and gains of electrons, think about this story. There once was a lion named LEO, which means Loss of Electrons is Oxidation. This king of the beasts was a little different from others. Instead of saying "roar," he said "GER", which means Gain of Electrons is Reduction. See Fig. 40-4.

Fig. 40-4

Look at Fig. 40-5. It shows the gain and loss of electrons by oxidizing agents and by reducing agents.

Check Your Understanding 3.

. Use the terms *reducing agent*, *reduction*, and *substance oxidized* to complete the table comparing oxidation and reduction.

Loss of Electrons	Gain of Electrons
(a) oxidation	(a)
(b)	(b) oxidizing agent
(c)	(c) substance reduced