Aim: How do we determine the oxidation state (number) of an element?

Chemists use oxidation numbers to keep track of the electrons involved in a redox reaction. The oxidation number is the charge which an atom has or appears to have in a compound.

Rules for assigning oxidation (states) numbers:

#1) The oxidation number of any uncombined (free) element = 0

Na, Ch2°, 58°

#2) The sum of the oxidation numbers in a compound = 0.

Na Ce, but Na Cloy Error!

Oxidation numbers to be assigned in order of importance

- Group 1 metals are always +1 in compounds. Li, Na^{+1} , K^{+1} ...

 Group 2 metals are always +2 in compounds. Be^{+2} , Mg^{+2} , Ca^{+2} ...
- 2nd) Group 17 nonmetals (F, Cl, Br & I) are 1 when written last in the formula. (Except when Cl, Br & I are bonded to O, then they have + oxidation states.)
- 3rd) Hs always + 1 unless this violates the above rules.
- 4th) os always 2unless this violates the above rules.

rules. REM: 1 & 2, 17 when last then H, 0 *

SEE 6) & 7) Below

#3) The sum of the oxidation numbers in a ion (its charge.) SEE 6) 4 7) Below

Assign oxidation numbers to all of the elements in each of the compounds and ions.

3)
$$\frac{+2}{K_2} \frac{+/2}{Cr_2} \frac{-/4}{7} = 0$$

